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ABSTRACT 

In this paper we study integral extensions of noncommutative rings. To begin, we 
prove that finite subnormalizing extensions are integral. This is done by proving 
a generalization of the Pard-Schelter result that a matrix ring is integral over the 
coefficient ring. Our methods arc similar to those of Lorenz and Passman, who 
showed that finite normalizing extensions are integral. As corollaries we note that 
the (twisted) smash product over the restricted enveloping algebra of a finite dimen- 
sional restricted Lie algebra is integral over the coefficient ring and then prove a 
Going Up theorem for prime ideals in these ring extensions. 

Next we study automorphisms of rings. In particular, we prove an integrality 
theorem for algebraic automorphisms. Combining group gradings and actions, we 
show that if a ring R is graded by a finite group G, and His a finite group of au- 
tomorphisms of R that permute the homogeneous components, with the order of 
H invertible in R, then R is integral over R~, the fixed ring of the identity com- 
ponent. This, in turn, is used to prove our final result: Suppose that if H is a fi- 
nite dimensional semisimple cocommutative Hopf algebra over an algebraically 
closed field of positive characteristic. If R is an H-module algebra, then R is in- 
tegral over R n, its subring of invariants. 

Introduction 

For noncommuta t ive  rings there are two related definitions of  an integral exten- 

sion, as follows: Let R be a r ing conta in ing  a subset S. I f  r E R, an S-monomial 

in r is a product  each of  whose factors is either r or an  element  of  S, with at least 

one  factor f rom S. The degree of  this m o n o m i a l  is the n u m b e r  of  factors "r" oc- 

curr ing in it. If  r l , r 2 , . . .  ,rm E R,  an  S-monomial in the ri is a product  each of  

whose factors is either one of the i",. or an element f rom S, with again at least one 

factor f rom S appear ing.  Here the degree is the total  n u m b e r  of  factors f rom the 

ri occurring.  We say that  R is Schelter integral ooer S if, given r E R, there exists 
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an integer n such that r n = ~, where ~ is a sum of S-monomials in r of degree less 

than n. R is said to be f u l l y  integral  o f  degree m over  S if, given r l , r2  . . . . .  rm E 

R, we get that r~ r E ' ' '  r,, = ~b, where ~b is a sum of S-monomials in the ri of degree 

less than m. Notice that by setting r I = r 2 . . . . .  r m = r E R ,  it follows that full 

integrality implies Schelter integrality of bounded degree. It is usual to only define 

integrality for S a subring of R, but in the course of proofs it is sometimes con- 

venient to allow more general subsets. 

First, we consider finite subnormalizing ring extensions and prove that these are 

fully integral. Lorenz and Passman [LP] have proved this result for finite normaliz- 

ing extensions. Our approach is based on theirs, which used a variation on the 

Par6-Schelter result [PS] that a matrix ring is Schelter integral over the coefficient 

ring. We prove here that it is sufficient to consider a suitable subring of lower tri- 

angular matrices. As a corollary we note that a twisted smash product of a re- 

stricted enveloping algebra of a finite dimensional restricted Lie algebra is fully 

integral over the coefficient ring. A Going Up theorem is then proved for prime 

ideals in these smash products. 

We continue by considering automorphisms of rings. In [Q2] we proved that 

if G is a finite group of automorphisms of a ring R and the order of G is a unit 

in R, then R is fully integral over the fixed ring R e. In Theorem 7 we extend 

this to an algebraic automorphism by first considering linear combinations of 

automorphisms. 

Next we consider group gradings and actions together. Suppose that R is a ring 

graded by a finite group G, and H is a finite group of automorphisms of R which 

permute the homogeneous components. It follows that the elements of H act as 

automorphisms of R~, the identity component of R. Theorem 8 shows that under 

these circumstances, if the order of H is invertible in R, then R is fully integral over 

R~. If  H is the trivial group then this is a result of G. Bergman (see [P1]). When 

G is trivial, this is [Q2, Theorem 1.3]. 

Finally, we use Theorem 8 to study certain Hopf algebra actions. Let H be a fi- 

nite dimensional cocommutative semisimple Hopf  algebra over an algebraically 

closed field of  positive characteristic. If R is an H-module algebra we prove that 

R is fully integral over the invariant subring R ~. This is achieved by using struc- 

ture theorems of  Kostant and Sweedler to see that the problem reduces to a case 

of Theorem 8. 

Subnormalizing extensions and integrality 

Let R ~ S be rings and suppose that there are finitely many elements x I , x 2 ,  

. . . .  xn E S such that S = R x l  + Rx2  q- • • • q- Rxn  and Rx~ + Rx2 -k .  • • Jr R x i  = 
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x~R + x z R  + ' "  + x iR,  for i = 1,2 . . . . .  n. Then we say that S is af in i t e  subnor- 

realizing extension of  R. These extensions were studied in [W]. If  Rxi = x iR for 

each i, then S is called a f ini te  normalizing extension. In [LP], Lorenz and Pass- 

man showed that if S is a finite normalizing extension of  R then S is integral over 

R. We extend this in Theorem 3 to finite subnormalizing extensions. First we need 

a technical result. This is a generalization, in the same spirit as [LP, Theorem 1] 

and [P1, Theorem 1], of  the Par6-Schelter integrality theorem [PS, Theorem 1]. 

These generalizations use variations on the original proof.  Here we follow [P2, 

Theorem 25.1] and therefore omit some of  the details. 

TREOREM 1. Let R be a ring, possibly without identity. Suppose that D c_ A c_ 

Mn (R) are rings, with D consisting o f  lower triangular matrices, and assume that 

for  i = 1 , 2 , . . . , n ,  

(i) Aei, i ~ A ,  

(ii) ei, iDei ,  i = ei, iAei ,  i. 

Then A is fu l ly  integral over D o f  degree m ( n ) .  Here m is a funct ion o f  n. 

PROOF. We need only show that A is Schelter integral over D of  bounded 

degree m (n) and then full integrality will follow as in [P2, Theorem 25.1]. Let 

Ak denote the set Afk ,  wheref~ = eL1 + e2,2 + - - "  + ek.k. From (i) we know that 

Afk  c_ A .  The proof  proceeds by induction on k. If  k = 1 and a E A1, we can 

choose t E D such that a 2 = at. Therefore, a is Schelter integral over D of  degree 

2. Now suppose that we know that every element of  Ak-~ is Schelter integral over 

D of  degree m and let a E Ak. We partition a as 

a ---- [i :1 
a" 0 

b 

D 

where a '  is a (k - 1) x (k - 1) block and b E R. Let 

= I:°!l a '  

0 E Ak_~. 

0 

If  al,  a2 E A, ,  we say al - a2, if al" = a~'. 

By analogy with [P2, Theorem 25.1] we have three facts: 

(1) Suppose a, al,a2 E Ak with al - a2, and t E D, then t a  I ~ t a  2 a n d  a a  I -~ a a  2.  

(2) If  a~,a E A , ,  then there exists t E D such that ~la - a~a - alt .  

(3) If  al ,a  2 . . . . .  aj, a E Ak ,  then ajai-l " " "~la - ajaj_l . . .a la  + r, where r is 
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a sum of  nonconstant D-monomials in al,  a2 . . . . .  aj of  degree at most j .  (We re- 

mark that in adapting the arguments given in [P2, Theorem 25.1] one needs the 

inclusions TAk c_ Ak  and A k T  c_ Ak . )  

Now we can finish the proof  by induction. Let a E Ak. Then ~ E Ak-i so that 

by our assumption 8 satisfies an equation 8m = ~(~),  where ~ is a sum of  T- 

monomials in 8 of  degree less than m. Multiply on the right by 8, to get an equa- 

tion ~i m+l = ~b(ti), where each T-monomial in ~b ends in ~. Consider ( ~ m + l  __ 

~b(ti))a. Each monomial in this expression is a product of  at most m + 2 factors, 

where all but the last is either ~ or of  the form ta = (ta) ", with t E D. The last fac- 

tor  in each is a, of  course. 

By applying (3) above to each monomial in (~m+~ _ ~b (~))a we conclude that 

0 m ( t l  m + l  - -  ~ ( t l ) ) a  m ( a  m + l  - -  ~b(a))a + r, where r is a sum o f D  monomials in 

a of  degree at most m + 1. Let s = a m+: - ~b(a)a + r. Then 

s =  b . 

D 

Since 

W ---- Isi :] 0 0 

0 E a k ,  

0 

we have that w "  = ~(w), a sum of  D-monomials in w of  degree less than m. It 

follows easily that 

v = s m - ~ ( s )  = i oo 1 C 0 . 

* 0 

Now choose 

t = 

[!0 
C 

1 E D, 
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so that 

( 0!1 v 2 - tv = 0 . 

This gives (v 2 - Iv) 2 - -  0. Substituting back, we get that a satisfies a monic poly- 

nomial of  degree 4(m + 2)m. • 

We now record a key lemma from [Q2]. 

LEMMA 2 [Q2, Proposition 1.2]. Let T D_ R D_ S be rings with R Schelter inte- 

gral (resp., fu l ly  integral o f  degree m)  over the subring S. Suppose fur ther  that 

e E T is an idempotent such that eRe c_ R. Then eRe is Schelter integral (resp., ful ly  

integral o f  degree m)  over eSe. • 

We now prove that subnormalizing extensions are fully integral. The proof here 

is essentially the same as the Lorenz-Passman proof  [LP, Corollary 2], once we 

have Theorem 1. If S = Rx~ + Rx2 + .  • • + Rx~ is a finite subnormalizing ex- 

tension, an ideal I of  R is called subnormal if Ix~ + Ix2 + • • • + Ixi = x~ I + 

x 2 I + ' - - +  xfl ,  for i =  1,2 . . . . .  n. 

THEOREM 3. Suppose S = Rx~ + Rx2 + . .  • + Rxn is a f inite subnormalizing 

extension o f  R, and let I be a subnormal ideal o f  R.  Then SI  = IS is fu l ly  integral 

over I o f  degree m (n).  

PROOF. We will just sketch the proof  and refer the reader to [LP] for complete 

details. Let F = R (n) be a direct sum of  n copies of  R and map F to S by the map 

a', sending (rl ,r2 . . . .  ,rn) E F to ~ i  rix~ E S. Note that this map is clearly onto 

and let K denote the kernel. Let A = {~b E Mn(R)]K(~ c_ K} .  A is a subring of  

Mn(R)  = EndRF. There is an obvious ring homomorphism from A to EndRS, the 

endomorphisms of  S as a left R-module. 

Let D be the set of lower triangular matrices (a,-j) E Mn (I) such that there ex- 

ists t E / w i t h  ~]J=l Oli, j X j  = x i t ,  for all i. It can be easily checked that D is a sub- 

ring of  M~ (I)  that is contained in A. Since I is a subnormal ideal, the image of  D 

in EndRS is precisely the set of multiplications by elements o f / ,  and ei, gDei,~ = 

Iei, i ~ Mn( I ) ,  for each i. 

Now let s E SI  = IS, which is a two-sided ideal of  S. Thus we can find a matrix 

f3 = (f3ij) E M , ( I )  such that ~i~1B~.jxj = xis, for all i. Then/~ E A and the im- 

age of/3 in EndRS is right multiplication by s. 
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We now have that the image of M,,(I) n A contains the set of right multiplica- 

tions by elements of IS. By Theorem 1, M,,(I) is fully integral over D and the re- 

sult follows by considering images in EndRS. • 

Restricted Lie algebras and crossed products 

Since a crossed product of the restricted enveloping algebra of a finite dimen- 

sional restricted Lie algebra is a finite subnormalizing extension of the coefficient 

ring, as an immediate consequence of the last result we get the following corollary. 

The reader is referred to [C1] for details of the construction of these crossed 

products. 

COROLLARY 4. Suppose L is a finite dimensional restricted Lie algebra with re- 

stricted enveloping algebra u (L) and let R * u (L) be a crossed product of  u (L) 

over R. Then R * u(L) is fully integral over R. • 

Another consequence of Theorem 3 is the following Going Up theorem for re- 

stricted enveloping algebra crossed products. This is analogous to the Going Up 

theorem for crossed products over finite groups [LP, Theorem 5]. 

COROLLARY 5. Let S = R * u (L) be a crossed product of the restricted envelop- 

ing algebra u (L) of a finite dimensional restricted Lie algebra L. Suppose that Q 

is an L-prime ideal of  R and that P is a prime ideal of  S with P O R C Q. Then 

there exists a prime ideal P' of S with P C P' and P' n R = Q. 

PROOF. Since Q is L-stable, Q is a subnormal ideal of R. Passing to S = S/P, 

is again a subnormal extension of R, the image of R. Note that Q is a subnor- 

mal ideal of/~. By Theorem 3, ~)S is fully integral over Q. Thus we have that 

(~S O k is nilpotent modulo Q. Since P n R c Q, taking preimages in S = R * 

u (L), it follows that QS + P is an ideal of S, with (QS + P) O R nilpotent modulo 

Q. But since (QS + P) O R is an L-invariant ideal of R and Q is L-prime, we have 

that (QS + P) n R = Q. Thus we have J = QS + P, an ideal of S with J O R = Q 

and P c J. Now J can be extended by Zorn's lemma, to an ideal P '  of S which is 

maximal with respect to P '  O R = Q. It is standard and easily checked that P '  is 

a prime ideal. • 

Prime ideals in these crossed products were studied in [C1]. When L is abelian 

and finite dimensional, incomparability and Going Down were proved for the ex- 

tension R C S. 
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Algebraic automorphisms 

We next turn our attention to automorphisms and fixed rings. 

PROPOSITION 6. Let R be an algebra over a commutative ring k. Let a~, az, 

. . . .  an be k-automorphisms of  R and let t~1,~2,. . .  ,an E k such that ~ i a i  = 1. 

I f  I is an ideal of  R such that ai(I) = I for  each i, then I is fully integral over J, 

the image of  I under ~ i  aioi. 

PROOF. Let D = {diag(a~(r ) ,a2( r ) , . . .  ,an(r))[r E I I c_ Mn(I)  and let e be 

the idempotent matrix 

13/1 ~ 1  " " "  0/1 

e = Ol 2 O~ 2 O~ 2 . 

Ot n O/n Ot n 

By Theorem 3, Mn(I) is fully integral over D, and we can then apply Lemma 2 to 

conclude that eMn ( I )e  = Ie is fully integral over eDe = Je. But now Ie is iso- 

morphic to I by an isomorphism taking Je to J. • 

THEOREM 7. Let R be an algebra over the field k and suppose that a is an al- 

gebraic k-automorphism of  R with minimal polynomial p (x) E k [x]. Let p (x) = 

(x - 1)tg(x), where g(1) q: 0. Then R is fully integral over [r E R I(o - 1)t(r) = 

0}. In particular, i f  t = l, then R is integral over the f ixed ring R <°>. 

PROOF. Let g(x)  = ao + a l x  +.  •. + oLtx t. Since g(1) ,: 0, we can assume 

that Z i  ix,- = I. Now apply the previous result with ai = tr i. Clearly, the image of  

~ i a i a  i is contained in {r E R I (a - 1)t(r) = 0}. The last statement is clear. • 

The following result combines the result of  Bergman (see [P1]) for graded rings 

together with integrality for fixed rings. We comment that an example of  Bergman 

shows that in the noncommutative setting, integrality is not transitive. Thus it is 
not possible to simply quote those results. 

THEOREM 8. Let R be graded by the finite group G and let H be a finite group 

of  automorphisms of  R that permute the homogeneous components with I HI ,  the 

order of  H, invertible. Then R is fully integral over R H of  degree m ( l H  I x IGI). 

PROOF. As in [Q1], define R#G* = ~ , g , h ~ G R g h - l e g ,  h ~ M o ( R ) .  If we let 

T =  MI4(R#G*), then Tcan  be regarded as a subring of  Mo×t4(R). I fx ,  y E H, 

let Ex, y E MI4(R#G*) c_ Mo×H(R) be the element with 1 = 1R#G* in the (x,y)-  
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position and zeros elsewhere. Let A c_ T be given by A = {ZheH rhEh,h [r e R, }. 
Viewing A c_ T c_ McxH(R), we see that A is a subring of diagonal matrices, so 

that it follows from Theorem 1 that Tis fully integral over A of degree m ([ H I x 

I G 1). Now let f E T c MH (R#G*) be the element with 

1 1 
_ _  - -  _ _  1R#G. 
IHI IHI 

in every position. Since f E Tis an idempotent, we can apply Lemma 2 to conclude 

that f T f  is fully integral over fAf. It is easily checked that f T f  = (R#G*)f is iso- 

morphic to R#G* by an isomorphism which takes f A f  to R~. Since R c_ R#G*, 

the result follows. • 

Of course, the proof of the last result showed that R#G*, and not just R, is in- 

tegral over R~. That R#G* is integral over R1 is implicit in [PI]. A small modifi- 

cation could be made so that the theorem included Theorem 7. 

EXAMPLE 9. (i) Suppose the finite group G acts on R and [G I is invertible 

in R. Then the skew group ring RG is integral over R c. 

This follows immediately from the theorem, since G acts as graded automor- 

phisms of  RG. 
(ii) Let R be G-graded with [G[-1 E R. Then Me(R) is fully integral over Ri. 

To see this, first observe that Me(R) can be graded by the group G x G, where 

G x 1 grades R and the grade (1, gh -~) E G x G is assigned to the matrix unit 

eg, h. The identity component of Me(R) is the set of diagonal matrices with entries 

from Rl. Now the group of permutation matrices F -- {~ = ~xecex.xglg E G} 
acts by conjugation, as graded automorphisms of  Mo(R), and the identity com- 

ponent is R1. • 

H o p f  a l g e b r a  a c t i o n s  

Let H be a finite dimensional semisimple Hopf  algebra and R an H-module al- 

gebra. In [Q2] we raised the question as to whether R is integral over the invari- 

ant subring R N. The answer is known to be "yes" when H is either a group 

algebra [Q2] or its dual; see [P1]. In the case where H is the dual of a group al- 

gebra, R is simply a graded ring. Here the invariant subring is R~, the identity 

component of  R. There is also a positive answer [Q2] if the action of H is inner 

in the sense of [BCM]. An earlier proof in the case of an inner action on an H- 

prime ring R is due to M. Cohen [Co]. Here we give another case which follows 

from Theorem 8. 
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THEOREM 10. Suppose H is a finite dimensional cocommutative semisimple 

Hop f  algebra over an algebraically closed field k, o f  positive characteristic p. Let 

R be an H-module algebra. Then R is fully integral over R n. 

PROOF. By Kostant's theorem [S1, 8.1.5], H = A#k[G] is a smash product, 

where A is an irreducible Hopf subalgebra and k[G] is the group algebra of the 

set of group-like elements of H. A is a semisimple cocommutative irreducible Hopf 

algebra. From [$2, Theorem 4.1] we know that A is the dual of the group algebra 

of a p-group P. Since A acts on R, we get that R is graded by the group P. The el- 

ements of G act on A as automorphisms and hence permute the primitive idem- 

potents corresponding to the elements of P, which span A. See [CM] for details. 

Suppose x E P, g E G and Px is the primitive idempotent of A corresponding to 

x. Then in H, gpxg -1 = py, for some y E P Now gRx = gPxR = pygR = Ry. In 

other words, G acts on R as graded automorphisms. Furthermore, k[G] is also 

semisimple so that I G I is a unit in k by Maschke's theorem. Thus the invariant 

subring R H is the set of fixed elements in R~ so that the result now follows from 

Theorem 8. • 

An elementary proof of the result of Sweedler [$2, Theorem 4.1] in the finite 

dimensional case we need can be found in [C2]. 
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