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ABSTRACT

In this paper we study integral extensions of noncommutative rings. To begin, we
prove that finite subnormalizing extensions are integral. This is done by proving
a generalization of the Paré-Schelter result that a matrix ring is integral over the
coefficient ring. Our methods are similar to those of Lorenz and Passman, who
showed that finite normalizing extensions are integral. As corollaries we note that
the (twisted) smash product over the restricted enveloping algebra of a finite dimen-
sional restricted Lie algebra is integral over the coefficient ring and then prove a
Going Up theorem for prime ideals in these ring extensions.

Next we study automorphisms of rings. In particular, we prove an integrality
theorem for algebraic automorphisms. Combining group gradings and actions, we
show that if a ring R is graded by a finite group G, and H is a finite group of au-
tomorphisms of R that permute the homogeneous components, with the order of
H invertible in R, then R is integral over R{’ , the fixed ring of the identity com-
ponent. This, in turn, is used to prove our final result: Suppose that if H is a fi-
nite dimensional semisimple cocommutative Hopf algebra over an algebraically
closed field of positive characteristic. If R is an H-module algebra, then R is in-
tegral over R , its subring of invariants.

Introduction

For noncommutative rings there are two related definitions of an integral exten-
sion, as follows: Let R be a ring containing a subset S. If r € R, an S-monomial
in r is a product each of whose factors is either r or an element of S, with at least
one factor from S. The degree of this monomial is the number of factors “r” oc-
curring in it. If ry,r,,...,7, € R, an S-monomial in the r; is a product each of
whose factors is either one of the r; or an element from S, with again at least one
factor from § appearing. Here the degree is the total number of factors from the
r; occurring. We say that R is Schelter integral over S if, given r € R, there exists
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an integer n such that r” = ¢, where ¢ is a sum of S-monomials in r of degree less
than n. R is said to be fully integral of degree m over S if, given r,ry,...,r, €
R, we get that r;ry- - - r,, =, where  is a sum of S-monomials in the r; of degree
less than m. Notice that by setting ry =r, =---=r, =r € R, it follows that full
integrality implies Schelter integrality of bounded degree. It is usual to only define
integrality for S a subring of R, but in the course of proofs it is sometimes con-
venient to allow more general subsets.

First, we consider finite subnormalizing ring extensions and prove that these are
fully integral. Lorenz and Passman [LP] have proved this result for finite normaliz-
ing extensions. Our approach is based on theirs, which used a variation on the
Paré-Schelter result [PS] that a matrix ring is Schelter integral over the coefficient
ring. We prove here that it is sufficient to consider a suitable subring of lower tri-
angular matrices. As a corollary we note that a twisted smash product of a re-
stricted enveloping algebra of a finite dimensional restricted Lie algebra is fully
integral over the coefficient ring. A Going Up theorem is then proved for prime
ideals in these smash products.

We continue by considering automorphisms of rings. In {Q2] we proved that
if G is a finite group of automorphisms of a ring R and the order of G is a unit
in R, then R is fully integral over the fixed ring RC. In Theorem 7 we extend
this to an algebraic automorphism by first considering linear combinations of
automorphisms.

Next we consider group gradings and actions together. Suppose that R is a ring
graded by a finite group G, and H is a finite group of automorphisms of R which
permute the homogeneous components. It follows that the elements of A act as
automorphisms of R, the identity component of R. Theorem 8 shows that under
these circumstances, if the order of H is invertible in R, then R is fully integral over
RY. If H is the trivial group then this is a result of G. Bergman (see [P1]). When
G is trivial, this is [Q2, Theorem 1.3].

Finally, we use Theorem 8 to study certain Hopf algebra actions. Let H be a fi-
nite dimensional cocommutative semisimple Hopf algebra over an algebraically
closed field of positive characteristic. If R is an H-module algebra we prove that
R is fully integral over the invariant subring R. This is achieved by using struc-
ture theorems of Kostant and Sweedler to see that the problem reduces to a case
of Theorem 8.

Subnormalizing extensions and integrality

Let R € S be rings and suppose that there are finitely many elements x,, x5,
oy X, €Ssuchthat S=Rx; + Rx; ++--+ Rx,and Rx; + Rx; + -+ Rx; =
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xR+ x;R+---+ xR, fori=1,2,...,n Then we say that S is a finite subnor-
malizing extension of R. These extensions were studied in [W]. If Rx; = x;R for
each i, then S is called a finite normalizing extension. In [LP], Lorenz and Pass-
man showed that if § is a finite normalizing extension of R then S is integral over
R. We extend this in Theorem 3 to finite subnormalizing extensions. First we need
a technical result. This is a generalization, in the same spirit as [LP, Theorem 1]
and [P1, Theorem 1], of the Paré-Schelter integrality theorem [PS, Theorem 1].
These generalizations use variations on the original proof. Here we follow [P2,
Theorem 25.1] and therefore omit some of the details.

THEOREM 1. Let R be a ring, possibly without identity. Suppose that D € A €
M, (R) are rings, with D consisting of lower triangular matrices, and assume that
fori=12,...,n,

(i) Ae;; € A,

(i) e;,; De; ; = e; ; Ae; ;.

Then A is fully integral over D of degree m(n). Here m is a function of n.

Proor. We need only show that A is Schelter integral over D of bounded
degree m(n) and then full integrality will follow as in [P2, Theorem 25.1]. Let
Ay denote the set Afy, where fy = e, + e, + - -+ ¢,,. From (i) we know that
Af, € A. The proof proceeds by induction on k. If k =1 and a € 4,, we can
choose t € D such that a? = at. Therefore, a is Schelter integral over D of degree
2. Now suppose that we know that every element of A,_; is Schelter integral over
D of degree m and let a € 4,. We partition a as

a a’ 0
a=|A b 0],
C D O

wherea’isa (k—1) X (k—1) block and b € R. Let

If ay,a, € Ay, wesay a; = a,, if af = aj .
By analogy with [P2, Theorem 25.1] we have three facts:
(1) Suppose a,a,,a, € A, with a, = a,, and f € D, then ta, = ta, and da, = da,.
(2) If a,,a € Ay, then there exists £ € D such that 4,a = a;a — a,1.
B Ifay,ay,...,45, a € Ay, then G;@;_,---d1a = a;a;_,---a;a + 7, where 7 is
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a sum of nonconstant D-monomials in a,,a,, . . .,a; of degree at most j. (We re-
mark that in adapting the arguments given in [P2, Theorem 25.1] one needs the
inclusions TA, € A, and A, T < A;.)

Now we can finish the proof by induction. Let @ € A;. Then @ € A,_; so that
by our assumption @ satisfies an equation @™ = ¢(d), where ¢ is a sum of 7-
monomials in @ of degree less than 7. Multiply on the right by &, to get an equa-
tion @™*! = y/(a), where each T-monomial in ¥ ends in @. Consider (a™*! —
¥ (d))a. Each monomial in this expression is a product of at most m + 2 factors,
where all but the last is either @ or of the form td = (fa) ", with ¢ € D. The last fac-
tor in each is a, of course.

By applying (3) above to each monomial in (@™*! — ¥ (@))a we conclude that
0= (@™ -y(a@)a= (a™"' — y(a))a+ 7, where 7 is a sum of D monomials in
a of degree at most m + 1. Let s = a™*? — y/(a)a + 7. Then

s 0 0
s=|A b 0
C DO
Since
s 00
w=]|0 0 0] € Ak,
0 00

we have that w™ = £(w), a sum of D-monomials in w of degree less than m. It
follows easily that

0 00
v=s"—-¢ts)=|[* ¢ O
* * 0
Now choose
* 0 0

t=\|* ¢ 0} €D,
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so that
0 0 0
v —tw=1|0 0 0f.
* x 0

This gives (v? — tv)? = 0. Substituting back, we get that a satisfies a monic poly-
nomial of degree 4(m + 2)m. ]

We now record a key lemma from [Q2].

LeEMMa 2 [Q2, Proposition 1.2]. Let T2 R 2 S be rings with R Schelter inte-
gral (resp., fully integral of degree m) over the subring S. Suppose further that
e € T is an idempotent such that eRe € R. Then eRe is Schelter integral (resp., fully
integral of degree m) over eSe. [ ]

We now prove that subnormalizing extensions are fully integral. The proof here
is essentially the same as the Lorenz-Passman proof [LP, Corollary 2], once we
have Theorem 1. If § = Rx; + Rx, +---+ Rx, is a finite subnormalizing ex-
tension, an ideal 7 of R is called subnormal if Ix; + Ixy +---+ Ix; = x; I +
Xp I +---+ x1, fori=1,2,...,n.

THEOREM 3. Suppose S = Rx) + Rx, +-- -+ Rx, is a finite subnormalizing
extension of R, and let I be a subnormal ideal of R. Then SI = IS is fully integral
over I of degree m(n).

Proor. We will just sketch the proof and refer the reader to [LP] for complete
details. Let F = R™ be a direct sum of n copies of R and map Fto S by the map
w, sending (ry,r,...,r,) € Fto X;r;x; € S. Note that this map is clearly onto
and let K denote the kernel. Let 4 = {¢ € M,(R)|K¢ < K}. A is a subring of
M, (R) = Endi F. There is an obvious ring homomorphism from A to EndgS, the
endomorphisms of § as a left R-module.

Let D be the set of lower triangular matrices (e; ;) € M,,(I) such that there ex-
ists t € I with 2 }=1 a; ;X; = x;t, for all i. It can be easily checked that D is a sub-
ring of M,,(I) that is contained in A. Since / is a subnormal ideal, the image of D
in EndgS is precisely the set of multiplications by elements of 7, and ¢ ;De; ; =
le; ; € M, (1), for each i.

Now let s € SI = IS, which is a two-sided ideal of S. Thus we can find a matrix
B = (Bi;) € M,(I) such that 37_, B, ;x; = x;s, for all i. Then 8 € A and the im-
age of 8 in End, S is right multiplication by s.
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We now have that the image of M, (I) N A contains the set of right multiplica-
tions by elements of IS. By Theorem 1, M, (I) is fully integral over D and the re-
sult follows by considering images in EndgS. n

Restricted Lie algebras and crossed products

Since a crossed product of the restricted enveloping algebra of a finite dimen-
sional restricted Lie algebra is a finite subnormalizing extension of the coefficient
ring, as an immediate consequence of the last result we get the following corollary.
The reader is referred to [C1] for details of the construction of these crossed
products.

CoRroLLARY 4. Suppose L is a finite dimensional restricted Lie algebra with re-
stricted enveloping algebra u(L) and let R * u(L) be a crossed product of u(L)
over R. Then R * u(L) is fully integral over R. [ ]

Another consequence of Theorem 3 is the following Going Up theorem for re-
stricted enveloping algebra crossed products. This is analogous to the Going Up
theorem for crossed products over finite groups [LP, Theorem 5].

CoROLLARY 5. Let S = R * u(L) be a crossed product of the restricted envelop-
ing algebra u(L) of a finite dimensional restricted Lie algebra L. Suppose that Q
is an L-prime ideal of R and that P is a prime ideal of S with PO\ R C Q. Then
there exists a prime ideal P’ of S with PC P’ and P’ N R = Q.

Proor. Since Q is L-stable, Q is a subnormal ideal of R. Passing to § = S/P,
§ is again a subnormal extension of R, the image of R. Note that Q is a subnor-
mal ideal of R. By Theorem 3, QS is fully integral over Q. Thus we have that
OS N R is nilpotent modulo Q. Since P N R C Q, taking preimages in § = R *
u(L), it follows that QS + P is an ideal of S, with (QS + P) N R nilpotent modulo
Q. But since (QS + P) N R is an L-invariant ideal of R and Q is L-prime, we have
that (OS+ P) N R = Q. Thus we have J=0S + P, anideal of Swith JAR=Q
and P C J. Now J can be extended by Zorn’s lemma, to an ideal P’ of S which is
maximal with respect to P’ N R = Q. It is standard and easily checked that P’ is
a prime ideal. [ |

Prime ideals in these crossed products were studied in [C1]. When L is abelian
and finite dimensional, incomparability and Going Down were proved for the ex-
tension R C S.
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Algebraic automorphisms
We next turn our attention to automorphisms and fixed rings.

ProrosiTION 6. Let R be an algebra over a commutative ring k. Let o(,0,,

.., 0, be k-automorphisms of R and let o, 2, . . ., 0, € k such that X; a; = 1.
If Iis an ideal of R such that o;(I) = I for each i, then I is fully integral over J,
the image of I under ¥; a;0;.

Proor. Let D = {diag(al(r),az(r), e Gy () |r € I] € M, (I) and let e be
the idempotent matrix

T TRERK'T
€= |ay 03 *° 0y
Qp Qp °°° Gy

By Theorem 3, M, (I) is fully integral over D, and we can then apply Lemma 2 to
conclude that eM, (I)e = Ie is fully integral over eDe = Je. But now Je is iso-
morphic to I by an isomorphism taking Je to J. [ |

THEOREM 7. Let R be an algebra over the field k and suppose that ¢ is an al-
gebraic k-automorphism of R with minimal polynomial p(x) € k[x]. Let p(x) =
(x — 1)'g(x), where g(1) # 0. Then R is fully integral over {r € R| (s — 1)'(r) =
0]. In particular, if t = 1, then R is integral over the fixed ring R,

Proor. Let g(x) = ag + oy x +---+ o,x". Since g(1) # 0, we can assume
that %}; o; = 1. Now apply the previous result with o; = ¢’. Clearly, the image of
2 a;a' is contained in {r € R| (0 — 1)'(r) = 0}. The last statement is clear.

The following result combines the result of Bergman (see [P1]) for graded rings
together with integrality for fixed rings. We comment that an example of Bergman
shows that in the noncommutative setting, integrality is not transitive. Thus it is
not possible to simply quote those results.

THEOREM 8. Let R be graded by the finite group G and let H be a finite group
of automorphisms of R that permute the homogeneous components with | H |, the
order of H, invertible. Then R is fully integral over R of degree m(|H| x |G|).

ProoF. As in [Q1], define REG™ = X, hec Ren-1€,0 © Mg(R). If we let
T =My (R#G™), then T can be regarded as a subring of Mg, 4 (R). If x,y € H,
let E, , € My(R#G*) € Mgy (R) be the element with 1 = 1gys+ in the (x,y)-
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position and zeros elsewhere. Let A € T be given by A = {Syep r"Epa|r € Ry}.
Viewing A € T S Mg,y (R), we see that A is a subring of diagonal matrices, so
that it follows from Theorem 1 that T'is fully integral over 4 of degree m (| H| x
|G]). Now let f € T S My (R#G™) be the element with

LI T
|H| ~ [H]

in every position. Since f € T is an idempotent, we can apply Lemma 2 to conclude
that 77 is fully integral over fAf. It is easily checked that fTf = (R#G*) f is iso-
morphic to R#G* by an isomorphism which takes fAf to R¥. Since R S R¥G*,
the result follows. ]

Of course, the proof of the last result showed that R#G*, and not just R, is in-
tegral over RY’. That R#G™ is integral over R, is implicit in [P1]. A small modifi-
cation could be made so that the theorem included Theorem 7.

ExampLE 9. (i) Suppose the finite group G acts on R and |G| is invertible
in R. Then the skew group ring RG is integral over RC.

This follows immediately from the theorem, since G acts as graded automor-
phisms of RG.

(i) Let R be G-graded with |G|~! € R. Then Mg(R) is fully integral over R;.

To see this, first observe that M (R) can be graded by the group G x G, where
G x 1 grades R and the grade (1, gh™') € G X G is assigned to the matrix unit
e, ». The identity component of Mg (R) is the set of diagonal matrices with entries
from R,. Now the group of permutation matrices I' = { g =2 ex'xglg € G}
acts by conjugation, as graded automorphisms of Ms(R), and the identity com-
ponent is R;. n

Hopf algebra actions

Let H be a finite dimensional semisimple Hopf algebra and R an H-module al-
gebra. In [Q2] we raised the question as to whether R is integral over the invari-
ant subring R¥. The answer is known to be “yes” when H is either a group
algebra [Q2] or its dual; see [P1]. In the case where H is the dual of a group al-
gebra, R is simply a graded ring. Here the invariant subring is R,, the identity
component of R. There is also a positive answer [Q2] if the action of H is inner
in the sense of [BCM]. An earlier proof in the case of an inner action on an H-
prime ring R is due to M. Cohen [Co]. Here we give another case which follows
from Theorem 8.
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THEOREM 10. Suppose H is a finite dimensional cocommutative semisimple
Hopf algebra over an algebraically closed field k, of positive characteristic p. Let
R be an H-module algebra. Then R is fully integral over R".

Proor. By Kostant’s theorem [S1, 8.1.5], H = A#k[G] is a smash product,
where A4 is an irreducible Hopf subalgebra and k[ G] is the group algebra of the
set of group-like elements of H. A is a semisimple cocommutative irreducible Hopf
algebra. From [S2, Theorem 4.1] we know that A is the dual of the group algebra
of a p-group P. Since A acts on R, we get that R is graded by the group P. The e!-
ements of G act on A as automorphisms and hence permute the primitive idem-
potents corresponding to the elements of P, which span A. See [CM] for details.
Suppose x € P, g € G and p, is the primitive idempotent of A corresponding to
x. Then in H, gp,g~"' = p,, for some y € P. Now gR, = gp,R =p,gR=R,. In
other words, G acts on R as graded automorphisms. Furthermore, k[ G] is also
semisimple so that |G| is a unit in & by Maschke’s theorem. Thus the invariant
subring R is the set of fixed elements in R, so that the result now follows from
Theorem 8. [ ]

An elementary proof of the result of Sweedler [S2, Theorem 4.1] in the finite
dimensional case we need can be found in [C2].
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